By Ian Dempster | Original Article

Given that HVAC systems typically account for 44% of commercial buildings’ energy consumption, HVAC optimization should be a priority efficiency upgrade after lighting improvements and other low hanging fruit. Full-scale HVAC optimization typically reduces energy usage and costs by 20% to 40%, improves system reliability by operating equipment more efficiently and at optimal temperatures, ensures consistently healthy air quality and building comfort, and reduces a building’s carbon footprint.

Boiler room

The term “optimization” is often applied loosely to various types of controls and upgrades in the HVAC world, but truly optimizing an HVAC plant means automatically controlling equipment as a holistic system, around the clock, to use the least amount of energy without sacrificing performance. Chillers, boilers, air handling units, ductwork, diffusers, thermostats, and sensors must work together to yield the full benefits. In addition, optimization software should continually capture and analyze system data to determine additional measures to improve efficiency and provide performance metrics.

Optimization can be a significant project but given the immediate savings and a typical payback period of less than four years it makes good sense to undertake it. What usually holds people back from pursuing optimization is one or more of three common barriers: concerns about optimization in sensitive environments; uncertainty about results; and cost accounting.

Our experienced staff can address each of these issues with careful project planning and mitigation strategies.

Contact Us


Posted in Energy, General, HVAC

Be the first to comment on

"Optimizing HVAC Systems for Better Energy Efficiency"

Leave a Comment